

Assessing the Potential for Supply Chain Environmental Impact Reductions

HP Labs Sustainability Innovation Workshop Palo Alto, California October 20th, 2008

Eric Masanet, Ph.D. Energy Analysis Department Environmental Energy Technologies Division

Ernest Orlando Lawrence Berkeley National Laboratory

LAWRENCE BERKELEY NATIONAL LABORATORY

Lawrence Berkeley National Laboratory (LBNL)

- U.S. Department of Energy research laboratory
- Managed by the University of California
- 4000 employees
 - 200 UC faculty
 - 600 graduate students
 - 90 post doc fellows
 - many visiting foreign researchers
- 10 Nobel Laureates

- So we've established a supply chain "footprint." Now what?
- Supply chain "potential" assessment refers to the modeling of discrete technological and operational options for reducing environmental impacts along the entire supply chain
 - Adoption of best practice technologies and management practices
 - Emerging technologies
 - Consideration of cost implications and other barriers to adoption
- Traditional LCA software tools do not typically provide the rich "bottom up" modeling details necessary to facilitate such analyses
- Objective: couple LCA (process and IO models) with detailed models (energy, emissions, cost, etc.) of discrete technologies and nontechnological measures for different economic sub-sectors to assess improvement potentials (process, firm, supply chain)
- Target audience: policy makers and OEMs with complex supply chains

Economic Impact, Energy Use, and GHG Emissions Associated with the Manufacture of a Midsize U.S. Passenger Car

Sources: Derived from (1) Hendrickson, C.T., Lave, L.B., and H.S. Matthews(2006). Environmental Life Cycle Assessment of Goods and Services. Resources for the Future Press, Washington, DC. and (2) Carnegie Mellon University Green Design Institute (2008) Economic Input-Output Life Cycle Assessment (EIO-LCA), US 1997 Industry Benchmark model [Internet], Available from:<htps://www.eiolca.net>

Electricity Use and Motor System Electricity Savings Potentials of Selected Sectors in the Manufacture of a Midsize U.S. Passenger Car

IO Sector	Description	Total Electricity Use (kWh)	Motor System Electricity Use (kWh)	Motor System Efficiency Potential	Potential Electricity Savings (kWh)				
336110	Automobile and light truck manufacturing	727	313	15%	47				
			Auto manua	facturer tota	al 47				
Selected major suppliers (direct and indirect)									
336300	Motor vehicle parts manufacturing	1283	552	15%	83				
331111	Iron and steel mills	681	341	12%	41				
331312	Primary aluminum production	574	80	12%	10				
331510	Ferrous metal foundries	215	71	12%	9				
325180	Other basic inorganic chemical manufacturing	130	74	16%	12				
32721A	Glass and glass products, except containers	102	33	15%	5				
325211	Plastics material and resin manufacturing	89	51	16%	8				
334413	Semiconductors and related device manufacturing	86	28	23%	6				
325190	Other basic organic chemical manufacturing	85	48	16%	8				
326210	Tire manufacturing	65	34	15%	5				
		Tot	al for select	ed suppliers	s 186				

Source: Sathaye, J.A., Lecocq, F., Masanet, E., Najam, A., Schaeffer, R., Swart, R., and H. Winkler (2008). "Opportunities to change development pathways towards lower greenhouse gas emissions through energy efficiency." Journal of Energy Efficiency. Forthcoming.

Process/technology rich LCA models

Infrastructure:

- Transportation (freight and passenger)
- Buildings
- Pavements
- Electricity generation: wind, hydro, solar, coal, natural gas
- Water treatment
- Used oil
- Automotive and plastics shredder residue
- Smart Lighting
- Pesticide Protection
- Sustainable IT
- Sustainable Communities

Services:

- Telework/telecommuting
- News delivery using wireless and wired telecommunications
- Teleconferencing versus business travel

Electronics industry:

- E-waste recycling systems
- Life-cycle optimization of personal computers
- Semiconductor manufacturing

A Multi-Disciplinary Research and Educational Partnership Between Industry, Government, and Academia.

Modeling of improvement potentials (i)

Potential California Energy Savings by Industry Group – Cumulative through 2016

Electricity

Natural Gas

Friedmann, R., F. Coito, E. Worrell, L. Price, E. Masanet, and M. Rufo (2005). "California Industrial Energy Efficiency Potential." Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry, West Point, New York, ACEEE.

LAWRENCE BERKELEY NATIONAL LABORATORY

Modeling of improvement potentials (ii)

Potential California Energy Savings by End Use – Cumulative through 2016

Friedmann, R., F. Coito, E. Worrell, L. Price, E. Masanet, and M. Rufo (2005). "California Industrial Energy Efficiency Potential." Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry, West Point, New York, ACEEE.

Technology characterization

Example: Liquid Membrane Technologies – Chemicals Manufacturing

Reference technology								
Description	Distill the isopro	still the isopropyl/water mixture to its azeotropic point, then do a liquid/liquid extraction						
Throughput or annual operating hours	tons	1.0						
Electricity use	kWh	120.90		11% electricity EIA 1997				
Fuel use	MBtu	8.36		89% fuel EIA 1997				
Primary Energy use	MBtu	9.39		25% of energy (4693 btu/lb) is for separation. DeBeer 1994				
New Measure Information:								
Description	Distill the mixture to its azeotropic point, separate with liquid membrane							
Electricity use	kWh	120.90						
Fuel use	MBtu	3.34		Technology saves 60% of separation fuel input				
Primary Energy use	mary Energy use MBtu 4.38							
Current status	Commercialized							
Date of commercialization		2000						
Estimated average measure lifetime	Years	10						
Savings Information:								
Electricity savings	kWh/%	0.00	0%					
Fuel savings	MBtu/%	5.016	60%					
Primary energy savings	MBtu/%	5.016	53%					
Penetration rate		Medium						
Feasible applications	%	20%						
Other key assumptions for savings								
Electricity savings potential in 2015	GWh	0.0						
Fuel savings potential in 2015	Tbtu	0.81						
Primary energy savings potential in 2015	Tbtu	0.81						
Cost Effectiveness								
Investment cost	\$	-7		\$62.6/ton for full installation of membrane separator DeBeer 1994				
Type of cost		Incremental						
Change in annual costs (O&M/other benefits)	\$	17		Operating costs are lower, but membrane must be replaced frequently				
Cost of conserved energy (electricity)	\$/kWh	-						
Cost of conserved energy (fuel)	\$/Mbtu	3.11						
Cost of conserved energy (primary energy)	\$/Mbtu	3.11						
Simple payback period	Years	11.2		Fuel mix in US from EIA 1997				
Internal rate of return	%	6%						
Key non energy factors								
Productivity benefits		None						
Product quality benefits		None						
Environmental benefits		Significant		Decreases CO2 emissions				
Other benefits		Significant		Investment 10% less than conventional installation				
Current promotional activity	H,M,L	High		Dow Chemical promoting				

Source: N. Martin, E. Worrell, M. Ruth, L. Price, R.N. Elliott, A.M. Shipley, J. Thorne (2000). Emerging Energy-Efficient Technologies. Lawrence Berkeley National Laboratory, Berkeley, California. LBNL-46990.

Applications to policy analysis

BERKELEY

Source: Masanet, E., and A. Horvath (2006). "An Analysis of Measures for Reducing the Life-Cycle Energy Use and Greenhouse Gas Emissions of California's Personal Computers." University of California Energy Institute Technical Report, Berkeley, California.

Example supply curve for industrial natural gas efficiency measures

Some synergistic projects

- BERKELEY LAB
- Modeling of long-term (2050) energy efficiency potentials for the California industrial, commercial, and residential sectors [California Energy Commission]
- Assessment of emerging industrial energy-efficient technologies (joint with ACEEE) [CEC, NYSERDA, Focus on Energy]
- Life-Cycle Assessment for Mitigating the Greenhouse Gas Emissions of Retail Products (UC Berkeley, LBNL, Carnegie Mellon) [*California Air Resources Board*]
- ENERGY STAR for Industry [U.S. Environmental Protection Agency]

Contact information

Eric Masanet

International Energy Studies Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 (510)486-6794 ermasanet@lbl.gov

Arpad Horvath

Associate Professor Department of Civil and Environmental Engineering University of California, Berkeley 215B McLaughlin Hall Berkeley, CA 94720-1712 (510)642-7300 horvath@ce.berkeley.edu